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Abstract—Pairwise comparisons are commonly used to estimate 

values of preference among a finite set of decision alternatives 

with regards to intangible factors. Inconsistency within decision 

making judgments may occur. This work proposes an approach 

to reducing inconsistency using multi-objective optimization with 

the objectives of different inconsistency types and judgment 

modification measures. The approach allows the decision maker 

to choose both the inconsistency measure(s) and the modification 

measure(s) employed to suit their needs and attitudes.  Utilizing 

multi-objective optimization allows for a range of possible trade-

off solutions to be presented to the decision maker for selection, 

aiding them in their pursuit of inconsistency reduction. It also 

enables better understanding of the characteristics of the decision 

problem and its inconsistency. 

Keywords-Decision analysis, Inconsistency, Evolutionary 

computing, Genetic algorithmns, Multi-objective optimiszation 

I.  INTRODUCTION 

The concept of Pairwise Comparisons (PC) is an important 
component in many Multi-Criteria Decision Making (MCDM) 
methods. The Law of Comparative Judgment [1], allows for a 
separation of concerns by breaking a set of elements into a 
number of pairs of elements for comparison. Each PC allows 
the Decision Maker (DM) to consider only a pair of elements 
and to determine their preference, and strength of preference, 
between the pair, with respect to an intangible factor.  

Given two elements x and y we denote that the DM prefers 
element x to element y with the notation x  y. Various 
numerical scales may be utilized to represent the strength of 
preference; the most utilized being the Saaty 1-9 Scale [2]. 
When, for example, element x is preferred 3 times more than 
element y, this can be denoted as x  y with a preference 
strength of 3. Conversely the reciprocal comparison, that 
element y is 3 times less preferred than element x, may be 
denoted as y x with a preference strength of 1/3. If neither 
element is preferred over the other, the elements are said to be 
equally preferred, denoted by a 1. An element compared with 
itself is also said to have equal preference, and denoted with a 
1. The examples in Section IV utilize the 1-9 Scale; however 
any bounded numerical scale could be utilized.   

A set of PCs, one for each pairing of elements in a set of 
elements, along with the self-comparison values and the 
reciprocal values, can be collated into a two-dimensional 

Pairwise Comparison Matrix (PCM). From a PCM a one-
dimensional representation of a DM’s judgments – a 
Preference Vector (PV) - can be derived through the use of a 
Prioritization Method (PM). Many PMs exist for this task, see 
[4] for a comprehensive discussion of PMs. 

The consistency of a PCM is the extent to which its set of 
judgments are coherent. When there is inconsistency present in 
a PCM then any PV derived from it will only be an estimate of 
its information. Consequently, different PMs may derive 
different PV estimates. The greater the amount of inconsistency 
present, the more the PV only represents an estimate of the 
PCM’s judgment information. Approximations of highly 
inconsistent PCMs produce large errors, hence 
“approximations from such matrixes make little practical 
sense” [3]. Inconsistency within a PCM of more than a handful 
of elements is almost inevitable [4] and therefore needs to be 
considered. Both ordinal and cardinal inconsistencies are 
important considerations for a DM. 

Ordinal inconsistency identifies inconsistent information 
without the strengths of preference of the DM’s judgments 
being considered. For example given a set of 3 elements, a, b 
and c: if a  b, b  c and c  a, then the judgments are 
intransitive and contradictory ordinal inconsistency is present. 
The judgments of elements a, b, c above represent a 3-way 
cycle between the elements. A method to define a measure of 
ordinal inconsistency in a PCM is via the number of 3-way 
cycles present. Calculating the number of 3-way cycles and its 
utilization as an objective as part of our approach is discussed 
in Section III. 

Cardinal inconsistency identifies inconsistency between a 
set of judgments taking into account the strength of preference 
of each judgment. For example, consider a set of 3 elements a, 
b and c: if a b with a preference strength of x and b c with a 
preference strength of y, then, for the judgment set to be 
cardinally consistent, the final judgment between elements a 
and c would need to be such that a  c with a preference 
strength of x*y. The Consistency Ratio (CR) [2] can be utilized 
to measure the amount of cardinal inconsistency present in a 
PCM and is discussed in Section III.   

This paper proposes an approach to reducing inconsistency 
using multi-objective optimization (MOO) through the 
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combination of both inconsistency and judgment modification 
measure objectives.  

The rest of the paper is structured as follows: Section II 
discusses proposed approaches for tackling inconsistency, 
along with the rational for the multi-objective approach; the 
multi-objective approach is discussed in Section III; examples 
using the approach are presented in Section IV; finally, 
conclusions and future work are discussed in Section V. 

II. APPROACHES TO REDUCING INCONSISTENCY 

Once inconsistency has been identified, there are various 
ways it may be tackled. These include (1) getting the DM to 
review their judgments; (2) automatically altering the 
judgments in some way; (3) proceeding but attempting to take 
the inconsistency knowledge into consideration. Our proposed 
approach is focused upon the second of these.  

Most approaches to altering the judgments in a PCM to 
reduce inconsistency generally focus upon either ordinal or 
cardinal inconsistency separately and seek to present a single 
altered PCM to the DM.  

A convergence algorithm approach was proposed in [5] that 
looks to find an altered PCM that has a cardinal inconsistency 
measure below a threshold, whilst looking to ensure the 
amount of departure from the original judgments is below 
given ranges. The values of altered PCM presented are 
composed of judgment values that fall outside of the original 
judgment scale utilized. A similar convergence algorithm 
approach is proposed in [6]. Only cardinal inconsistency is 
considered there with the aim to find a solution below a 
cardinal measure threshold with the smallest deviation from the 
original PCM. The modified PCM judgment values fall outside 
of the original judgment scale used. An approach that focuses 
on reducing ordinal inconsistency is proposed in [7]. This 
approach seeks to reduce the number of 3-way cycles within a 
PCM via an iterative process of judgment reversals. It seeks to 
reverse judgments that will result in the maximum reduction of 
3-way cycles to arrive at a solution without any 3-way cycles.  

Inconsistency reduction utilizing Evolutionary Computing 
(EC) has been utilized in [8]. However, only cardinal 
inconsistency is considered and the approach does not utilize - 
MOO. The reciprocal property of PCM judgments is not 
always maintained in discovered solutions. Similarly [9] 
utilized EC for the reduction of inconsistency of a PCM; here 
the PCM and the altered PCM are represented as fuzzy 
numbers. This approach considers cardinal inconsistency and 
does not utilize MOO. Likewise [10] utilizes EC to find an 
altered solution below a cardinal inconsistency threshold. 
Inconsistency and the change to the PCM are considered via 
their combination into a single objective function. 

A MOO approach has been utilized for the task of deriving 
PVs from a PCM [11] called TOP (Two Objective 
Optimization). Here the two objectives are defined as Total 
Deviation (TD) - a measure of the total distance that the PV 
weights are from the initial judgments - and the Number of 
Violations (NV) - a measure of the number of ranking 
violations between elements of the PV and the corresponding 
initial judgments. This approach utilizes EC methodology to 
derive a set of Pareto-optimal trade-off solutions. 

Our optimization approach, which also utilizes EC, 
attempts to give the DM control over the selected objectives 
and then presents a range of reduced inconsistency solutions to 
the DM that preserve the original judgment scale.  

III. OVERVIEW OF APPROACH 

Our approach is now described beginning with a discussion 

of the tradeoff nature of its objectives before discussion of the 

measures of inconsistency and measures of difference. This is 

followed by discussion of their usage within a MOO 

framework. 

A. Multi-objective Optimisation (MOO) 

Any reduction of inconsistency within a PCM will 
inevitably result in some change to the PCM. The DM is 
seeking to simultaneously optimize the conflicting objectives 
of reducing inconsistency whilst minimizing the amount of 
change in their judgments. Our approach utilizes a MOO 
approach to model this scenario with an emphasis upon giving 
the DM as much flexibility as possible regarding the measures 
of inconsistency and measures of difference employed. 

B. Measures of Inconsistency 

1) Consistency Ratio(CR) 
The CR proposed by Saaty [2] is a measure of the amount of 

cardinal inconsistency present within a PCM. Firstly the 
eigenvalue of the largest eigenvector of the PCM (λ-max) is 
calculated. When an order n PCM is perfectly consistent then 
λ-max = n. Next, the Inconsistency Index (CI) of the PCM is 
determined. The division of n-1 allows CI to be indifferent to 
the value of n.  
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The CR is then found by dividing the CI by the Average 
Consistency Index (ACI) for the order of the PCM. The ACI 
values represent the average inconsistency found over 50,000 
trials of randomly generated matrixes for each PCM order [2].  
(These utilized the 1-9 Scale; appropriate ACI estimations 
would be needed to be employed for a different bounded scale). 

ACI

CI
CR     (2) 

The lower the CR value, the lower the amount of cardinal 
inconsistency present in the PCM. CR is employed as a 
minimization objective within our MOO approach. Saaty [2] 
further proposed an acceptability threshold value of a PCM’s 
CR value. The threshold is designed to be an indicator as to 
whether a PCM is consistent enough for a satisfactory PV 
estimate to be derived. Using this threshold when a PCM has a 
CR value of 0.1 or less, it is considered to be acceptable. 

2) 3-Way Cycles 
The number of 3-way cycles present within a PCM is an 

ordinal measure of inconsistency. The presence of 3-way 
cycles can be determined via an algorithm proposed in [12]. 
This can also be utilized to determine the total number of 3-
way cycles within a PCM, usually denoted as L. We only need 
to consider cycles of 3 elements as it has been shown that 



 

 

eliminating all 3-way cycles ensures elimination of cycles of 
higher orders [13]. The number of 3-way cycles is employed as 
a minimization objective in our MOO approach. 

C. Measures of Difference 

Given an original encoded PCM judgment set (O) 

represented as a set of N encoded judgments )...,( 21 Nooo . 

The amount of change between O and a second altered PCM 

judgment set (A) can be calculated using a variety of measures. 

Each of these measures, which are listed below, can be 

employed as objectives in our MOO approach. 

 

1) Number of Judgment Violations(NJV) 
NJV is a measure of the number of the initial set of PC 

judgments that have changed, without consideration of the 
amount of change of each judgment. Where  evaluates to 0 

or 1 for each Boolean evaluation.  
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  (3) 

2) Total Judgment Deviation (TJD) 
TJD is a measure of the total amount of change between the 

original judgments and an altered judgment set. It takes into 
consideration the amount of preference change between each 
judgment comparison. 
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A modified version of the TJD measure is the Squared Total 
Judgment Deviation (STJD). Here the deviations between the 
corresponding judgments in both sets are squared, so 
consequently altered judgments with a large alteration in 
strength will have a greater impact upon the measure’s total. 
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3) Number of Judgment Reversals (NJR) 

NJR is a measure of the number of judgments from the 

original set that have been inverted in an altered judgment set. 

For example, given an original judgment between elements x 

and y where x y: if in an altered judgment set it is the case 

that x y then a judgment reversal has occurred. This measure 

also considers half reversals. Half reversals are defined as 

occurring when a judgment of equal preference is altered to be 

a judgment of not equal preference or a judgment not of equal 

preference is altered to be a judgment of equal preference. 

When using the 1-9 scale we can specify equal preference; 

greater than equal preference and less then equal preference, 

with 1, greater than 1 and less than 1 respectively. 
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where 

1: jo   1 and ja    1 

1: jo   1 and ja    1 

½: jo   1 and ja  1 

½: jo   1 and ja   1 

0: otherwise 

 

D. MOO Approach  to Reducing Inconsistency 

Through selection of measures of inconsistency and 
measures of difference by the DM, our MOO approach seeks to 
find a set of non-dominated solutions approximating the Pareto 
front (see below) of the PCM problem with respect to the set of 
objectives chosen by the DM that most suit their preferences. 

Our approach is to find feasible solutions that strive to 
simultaneously minimize the set of objectives - which is 
composed of the set of 1 or more inconsistency objectives, and 
the set of objectives of 1 or more measures of difference. A 
feasible solution being one that consists of values from the 
original judgment scale’s range. 

A solution 1S  is said to dominate another solution 2S  if 

for the set of the objectives Obj  it has a greater objective 

value for at least one objective and no worse objective values 
for any of the other objectives. 

)()( 21 SObjSObj 
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A solution 1S  is said to strongly dominate another solution 

2S  if for each objective it has a greater objective value. 

)()( 21 SObjSObj 
   

(8) 

The solution archive at a given generation of operation 
contains the set of non-dominated solutions found so far. A 
solution is said to be Pareto optimal if one of its objective 
values cannot be improved without simultaneously reducing 
another. If the solution archive grows larger than its maximum 
defined size then a diversity mechanism, as defined in [14], is 
utilized to retain the best spread of non-dominated solutions 
found.  

E. Multi-Objective Genetic Algorithms (GAs) 

GAs, first developed by Holland [15], utilize nature’s 
philosophies of genetics and natural selection to stochastically 
solve optimization problems – generally by means of evolving 
a population of potential solutions over many generations. GA 
can be used to solve both single and multi-objective problems. 
When we have multiple conflicting objectives there is usually 
not a single solution that optimizes all the objectives. Instead 
there are a set of solutions which, without additional 
information, are equally as suitable. The members of this set of 
solutions are termed Pareto optimal solutions and together they 
map out the trade-off boundary edge – the Pareto front - of the 
problem.  



 

 

Various multi-objective GAs have been proposed, for 
example [14], [16]. They seek to find a set of solutions that are 
as close as possible to the problem’s Pareto front whilst also 
being as evenly spread along the front as possible, creating an 
approximation of the problem’s Pareto front.  

Our approach utilizes the MOCell multiple objective GA 
[17]. In this methodology the population is arranged as a two-
dimensional grid and an external archive is used to store the 
current best solutions found. Restrictive mating is utilized such 
that population individuals are selected to mate only with those 
individuals close to them in the grid. Binary Tournament is 
then utilized to perform this restricted selection process.  This 
can ensure diversity is preserved within the population for 
longer. Additionally the mechanism of feedback is used to add 
a given number of the best solutions found so far back into the 
population at the start of each generation – so as to increase the 
aggressiveness towards finding Pareto optimal solutions. 
Utilizing a GA that makes use of an external archive and 
allowing this value to be user-specified, gives the DM control 
over the maximum number of solutions that may be returned 
and continues the philosophy of our approach to provide 
flexibility to the DM.  

The benefits of our proposed MOO approach are three-fold. 
Firstly, it allows for a DM to state their preference to the type 
of inconsistency reduction of most concern to them. The DM 
can define whether to operate with respect to ordinal 
inconsistency, cardinal inconsistency or both. The DM also has 
control over the selection of measure(s) to be employed, 
regarding how changes in their judgments are calculated. 
Secondly, by adopting a MOO approach a range of possible 
trade-off solutions can be presented to the DM from which they 
can select their preferred solution.  This also helps the DM 
glean knowledge regarding their problem and its inconsistency. 
Finally, the set of solutions presented to the DM preserve the 
original judgment scale used to define the initial judgments 
making it easier for the DM to assimilate and compare 
solutions. 

IV. EXPERIMENTATION 

The encoding of a GA’s population defines how elements 
in the decision space are to be represented as individuals in the 
solution space. For our approach only the top triangle of a 
PCM is encoded as a numerical vector. By utilizing the 
reciprocal axiom [18], the rest of the PCM can be reconstructed 
from its top triangle. The number of judgments J needed to 
represent the top triangle of an n order PCM is given by: 

2

)1( 


nn
J    (9) 

We can map the possible values of the bounded scale as a 

set of integers. Encoding in this way ensures that any solutions 

found will also conform to the original numerical judgment 

scale. Figure 1 shows an example encoding of an order 4 PCM 

O into an Encoded Judgment vector (EJ). 

 
Figure 1.  Example Encoding of a PCM 

Our first example is a PCM taken from [19] (Table I) and 
the second is an example PCM with high levels of both 
cardinal and ordinal inconsistency (Table III).  The MOCell 
algorithm approach was applied with the following parameter 
settings: population size of 100 (10x10 grid); maximum 
evaluations count of 25,000; archive size of 10 with a feedback 
value of 5. Selection is performed via binary tournament with 
single point crossover (with crossover probability 0.9) and bit 
flip mutation (with probability 0.01) employed. The size of the 
archive is re-definable by the DM. 

Example 1: [19] 

TABLE I.  EXAMPLE 1: CR: 0.17, L: 1 

 
1     2     3     4     5     6     7     8 

1     1 5 3 7 6 6 1/3 1/4 

2     1/5 1 1/3 5 3 3 1/5 1/7 

3     1/3 3 1 6 3 4 6 1/5 

4     1/7 1/5 1/6 1 1/3 1/4 1/7 1/8 

5     1/6 1/3 1/3 3 1 1/2 1/5 1/6 

6     1/6 1/3 1/4 4 2 1 1/5 1/6 

7     3 5 1/6 7 5 5 1 1/2 

8     4 7 5 8 6 6 2 1 

 

Assuming the DM chooses objectives CR and STJD – NB: 
other objectives could be chosen instead of or along with these. 
Figure 2 shows a final solution space and solutions for CR 
against STJD. The CR threshold of 0.1 is shown via a dashed 
vertical line. The DM is then free to review and select any of 
these solutions. For instance, the DM could select the 1st 
solution along the Pareto front with a CR value less than 0.1 
(Table II). The DM could equally have selected any other 
solution or remained with their original judgment set. 

 

 



 

 

 

Figure 2.  Example 1 Solution Space 

TABLE II.  POSSIBLE EXAMPLE 1 SOLUTION CR: 0.09, L: 0 

 
1     2     3     4     5     6     7     8 

1     1 5 2 7 6 6 1 1/4 

2     1/5 1 1/3 5 3 2 1/5 1/7 

3     1/2 3 1 6 3 4 4 1/5 

4     1/7 1/5 1/6 1 1/3 1/3 1/7 1/8 

5     1/6 1/3 1/3 3 1 1/2 1/5 1/6 

6     1/6 1/2 1/4 3 2 1 1/5 1/6 

7     1 5 1/4 7 5 5 1 1/2 

8     4 7 5 8 6 6 2 1 

 

Example 2: PCM with high levels of inconsistency  

TABLE III.  EXAMPLE 2: CR: 0.76 AND L: 9  

 
1     2     3     4     5     6     7     8 9     

1     1 1/8 1/3 1/7 1/3 1 8 1/9 1/4 

2     8 1 5 1/2 1/3 4 3 7 5 

3     3 1/5 1 2 1/2 1/6 7 7 1/9 

4     7 2 1/2 1 1 5 2 2 1/9 

5     3 3 2 1 1 7 6 5 6 

6     1 1/4 6 1/5 1/7 1 2 1/6 1 

7     1/8 1/3 1/7 1/2 1/6 1/2 1 1 8 

8     9 1/7 1/7 1/2 1/5 6 1 1 1/8 

9     4 1/5 9 9 1/6 1 1/8 8 1 

 

Assuming the DM is interested in seeking a reduction in 
cardinal inconsistency and is also concerned with minimizing 
NJR, they can select CR and NJR as their objectives. Figure 3 
shows a range of solutions within the solution space found for 
these objectives. 

 

Figure 3.  Example 2 Solution Space 1 

The DM is able to select any solution ranging from 0 NJR 
upwards. They could choose a solution that has a large 
decrease in CR (to less than 0.1) and a NJR value of 0 – so 
without a single reversal or half reversal occurring (Table IV). 

TABLE IV.  POSSIBLE EXAMPLE 2 SOLUTION 1: CR: 0.09, L: 9 

 
1 2 3 4 5 6 7 8 9 

1 1 1/3 1/2 1/2 1/6 1 2 1/2 1/3 

2 3 1 2 1/2 1/2 2 4 2 2 

3 2 1/2 1 2 1/4 1/2 2 2 1/2 

4 2 2 1/2 1 1 2 3 2 1/2 

5 6 2 4 1 1 5 6 5 3 

6 1 1/2 2 1/2 1/5 1 2 1/2 1 

7 1/2 1/4 1/2 1/3 1/6 1/2 1 1 2 

8 2 1/2 1/2 1/2 1/5 2 1 1 1/2 

9 3 1/2 2 2 1/3 1 1/2 2 1 

 

Alternatively the DM may be more concerned in reducing 
ordinal inconsistency and thus instead selects objectives L and 
NJR. The associated solution space (Figure 4) shows that a 
solution has been found with an NJR value of 3.5 with all 3-
way cycles removed (Table V). The DM is free to choose this 
solution or any other solution of varying amounts of NJR. 



 

 

 

Figure 4.  Example 2 Solution Space 2 

TABLE V.  POSSIBLE EXAMPLE 2 SOLUTION 2, CR: 0.33 L: 0 

 
1 2 3 4 5 6 7 8 9 

1 1 1/7 1/4 1/9 1/7 1 7 1/5 1/7 

2 7 1 6 1/7 1/9 4 2 3 1 

3 4 1/6 1 1/2 1/4 1/3 5 1 1/6 

4 9 7 2 1 1/4 6 9 8 1/7 

5 7 9 4 4 1 3 6 4 9 

6 1 1/4 3 1/6 1/3 1 6 1/6 1 

7 1/7 1/2 1/5 1/9 1/6 1/6 1 1 1/5 

8 5 1/3 1 1/8 1/4 6 1 1 1/3 

9 7 1 6 7 1/9 1 5 3 1 

 

V. CONCLUSION AND FUTURE WORK 

We have presented a MOO approach to reducing 

inconsistency within PCMs. The approach gives the DM 

control over the objectives chosen regarding both the type of 

inconsistency reduction and the measures of change to their 

judgments. By employing a multi-objective approach, a range 

of possible solutions can be presented to the DM for 

comparison and selection. The DM can also control the total 

number of possible solutions that may be returned. The 

presented solutions maintain the original judgment scale 

utilized. 

Future work will provide further flexibility by, for 

example, allowing the DM to define soft or hard constraints 

upon the objectives - producing more aggressive searching 

within certain areas of the solution space. GA performance will 

be analyzed with regards to quality, speed and stability of 

produced results. Visualization of the solution space with more 

objectives will also be investigated. 
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